Os.rIRAM INTRODUCTION:

The Fulcrum Computer Products OMNIRAM for the IEEE 696/S-100 bus provides 64 kilobytes of fast static random access memory. Provision is made for 8 or 16 -bit transfers, extended 24 -bit addressing, and for control via the bus phantom line. In addition, a number of features are included to make the OMNIRAM compatible with systems designed before the IEEE-696 standard was developed. These include bank selection and provision for operation with IMSAI-type front panels. When the bank select option is activated, the board is divided into two parts which can reside in separate banks. The division of the board may be into two 32 K sections or into one 16 K section and one 48 K section. Provision is made for DMA overide of bank select if needed. The board is also compatible with IMSAI-type extended addressing.

In the option selection sections which follow, the board is viewed from the component side. The edge opposite to the 100 pin $S-100$ bus connector is called the top and is so illustrated in all figures. All of the 8 sections of the dip switches are numbered from the top down, i.e. Sl-l is the section of $S l$ closest to the top of the card. Shorting of pin jumpers is accomplished with the shorting plugs supplied with the OMNIRAM. The symbol which appears in the following sections indicates that the two pins are shorted by one of the plugs.

EXTENDED. ADDRESSING OPTION:

To enable 24-bit extended addressing short the two upper pins in jumper area G. To disable extended addressing short the lower top pins in jumper area G. One or the other of these two options MUST be selected. If extended addressing is selected, the 8 section dip switch S 5 is used to select the extended address of the OMNIRAM. Al6 is selected by section $S 5-1$ while A23 is selected by section S5-8. If a switch section is ON (closed) logical address 0 has been selected for that address line. For example, to set the address of the OMNIRAM to 010000 H , all of the sections of $S 5$ should be in the ON position except for $55-1$ which should be OFF.

To make the OMNIRAM respond to the phantom line, short the lower-right two pins in jumper area C (between Ul2 and Ul3). If this option is selected, pulling the phantom line low will disable the OMNIRAM. To enable IMSAItype extended address line Al6 short the two middle pins in jumper area C. To disable control by the phantom or IMSAItype extended addressing short the upper-right two pins in jumper area C. One of these three options MUST be selected for the OMNIRAM to function correctly.

8/16 BIT TRANSFERS:
If this option is selected the OMNIRAM will respond to a sixteen bit transfer request on $S-100$ bus line 58 by pulling $S-100$ bus line 60 low and by reading or writing a sixteen bit word via the data bus lines. The pins in jumper area D and E are used to select this option. To select l6-bit transfers short the two pins in jumper area D and short the right two pins in jumper area E. 8-bit transfers in l6-bit systems may be forced by setting the jumpers as required for 8-bit systems. This option may be used to test by timing programs that l6-bit transfers are taking place.
pDBIN/sMEMR OPTIONS:
This option is selected in jumper area F. The sMEMR option should be chosen. This is accomplished by shorting the upper two pins in the jumper area.
Phantom enabled

8-bit transfers
8-bit systems

16-bit transfers 16-bit syste?

8-bit transfers 16-bit systems

- normal position
$32 \mathrm{~K} / 64 \mathrm{~K}$ BOARD OPTION:
Although the OMNIRAM is normally : olied as a 64 K board, it may be desirable under certain circumstances to use only 32 K of the board. The normal 64 K configuration is activated by shorting the outer-most pairs of pins in jumper area H. If the 32 K option is selected short the second and third pins from the top in area H. The address of the board will be determined by shorting or not shorting the lower two pins in that area. If these pins are shorted the lowest address of the OMNIRAM will be 0000 H . If they are open, the lowest address will be 8000 H . One of these options MUST be selected for the OMNIRAM to function correctly.

FRONT PANEL OPTION:

To enable the IMSAI front panel to write into the OMNIRAM from the front panel switches, short the left two pins in jumper area A. To disable this ction short the right two pins in a-sa A. The IMSAI front panel will read the contents of the OMNIRAM even if this option is disabled. It is recommended that this function be disabled if operation of the front panel is not required.

BANK SELECT OPTION:
To enable bank select-type extended addressing via an IO port short the right two pins in jumper area B. To disable ALL bank select functions, short the left two pins in jumper area B. One or the other of these options MUST be selected. If the bank select option is disabled, none of the bank-select switch settings have any effect on the operation of the OMNIRAM. If the bank select option is not desired,integrated circuits U3,U4,U5,U6,U7, and U18 may be removed. This will reduce the power ennsumed by the OMNIRAM.

64K Option (normal)

32K Option (0000H)

A

- A front panel disabled
- B bank select enabled
- . B bank select disabled

BANK SELECT PORT:
The IO port address of the bank select function is chosen by dip switch Sl. The position of switch section Sl-l determines the least signifiant address of the the bank select port while sl-8 determines the most significant address. If a switch is ON (closed), logical value 0 is selected. For example, a common bank select IO port is $40 H$. To select this port, turn ON sections $1,2,3,4,5,6$, and 8 of switch $S l$ and turn OFF section 7 .

BANK OCCUPANCY:

The OMNIRAM is divided into two sections, a HIGH ADDRESS section and a LOW ADDRESS section. The high address section is 32 K in length extending from 8000 H to FFFFH if switch section $\mathrm{S} 2-8$ is ON . The section is 16 K in length of switch S2-8 is OFF. The low address section occupies the portion of the address space not occupied by the high address sectin.

The banks in which the low address section is located are selected by switch S4. Bank-0 is selected by turning ON switch section S4-1. Bank-7 is selected by turning ON switch section S4-8. A section of the OMNIRAM may reside in more than one bank. This is accomplished by turning on more than one section of switch $S 4$ at one time.

The banks in which the high address section is located are selected by switch S3. The operation of this switch is similar to that of switch S4.

BANK ACTIVATION:

The two sections of the OMNIRAM can be reset to ACTIVE or DISABLED on power-on or reset. The following table illustrates the options:

Both sections DISABLED on reset: Low section ENABLED, high section DISABLED: High section ENABLED, low section DISABLED: Both sections ENABLED on reset:

S2-1	S2-2	S2-3	S2-4
ON	ON	OFF	OFF
OFF	ON	ON	OFF
ON	OFF	OFF	ON
OFF	OFF	ON	ON

Only those combinations of the switch settings shown in the above table should be used. Many 8-bit systems execute an automatic jump to a PROM at a high address such as 0 COOOH on reset or power-on. The disk boot routine will automatically activate the high bank on execution. For such systems, the LOW SECTION ENABLED, HIGH SECTION DISABLED option should be selected. The high bank is usually set to reside in bank-0.

If DMA requests are to override the bank select feature, turn switch
5 ON. If this switch section is OFF, the board will not distinguish bucween DMA transfers and HOST CPU transfers and the settings of the switches discussed below do not affect the operation of the OMNIRAM. The transfers will proceed according to the current bank selection status. If $\operatorname{si-5}$ is ON the two sections of the OMNIRAM can be set to be active or inactive during DMA transfers regardless of the current bank selection status. If $52-6$ is $O N$, the high section of the board is enabled during DMA transfers, if $52-6$ is OFF, the high section is disabled during DMA transfers. If $S 2-7$ is $O N$, the low section of the board is enabled during DMA transfers, if S2-7 is OFF, the low section is disabled during DMA transfers.

THEORY OF OPERATION:
Because the OMNIRAM is a static memory which does not require refresh cycles to preserve the contents of the memory, its operation is simple and straightforward. A board select signal is generated by the 8-bit comparator U2l which accepts inputs from sOUT, PHANTOM*, sINP, sINTA, the extended addressing circuitry, and from the bank select circuitry. Jumpers are provided to disable several of these inputs if required. If the l6-bit transfer option jumpers have been installed, the board will respond to a l6bit transfer request by pulling $\mathrm{S}-100$ buss line 60 (SIXTN*) low to indicate to the host processer that the board is capable of making a l6-bit transfer. Note that if the board receives a l6-bit transfer request on an odd address boundary, it will not acknowledge the request on line 60 (SIXTN*). The INTEL 36 will not make such a request.

The OMNIRAM has two internal data busses. All of the memory chips which are addressed when AO is true are connected to one bus while those chips which are addressed when AO is false are connected to another bus.

A bipolar prom U22 receives as inputs board select, l6-bit transfer request, AO, Al5, and sMEMR. This prom arranges the internal data busses of the OMNIRAM as required by the type of transfer. The contents of this prom are shown on page 7. If the request is for a l6-bit transfer the cross link between on the internal data busses $U 8$ is disabled and the two bi-directional buffers to the S-lOO data bus are enabled. The chip-select/output enable pins of the appropriate memory chips are activated by the four three-line-to-eightline decoders Ul, U2, U9, and Ul0. If 8-bit transfers are requested, the internal bus cross connect U8 is activated as required. Bus contention glitches are avoided by enabling the S-lOO bus buffers U19 and U2O only after the internal bus connections have been established. This is possible because sMEMR which determines whether or not the cycle is to be a READ or a WRITE is established before pDBIN/MWRT is asserted.

Output to the bank select IO port is recognized by address comparitor U3 in combination with sOUT and pWR*. This signal generates a clock input to two sections of the latch U5. The state of data input to the two sections of U5 is determined by whether or not a TRUE logic level exists on any line of the $S-100$ data bus which is connected to the input of the two 8-input positive nąnd gates U6 and U7 via a closed bank select switch. If this is so, the tch assumes an active or selected state. Switch options are provided to set
the two bank select latches to the active or inactive state when POC* or RESET* are active. A bipolar prom U4 takes inputs from the two bank select latches, Al5, Al4,PHLDA, and three sections of switch s3. These input are used to provide a bank select qualifier to the board select comparitor U2

Use caution when removing the memory chips from their sockets. CMOS parts are susceptible to damage from static electricity.

MEMORY CHIP LOCATIONS ON THE OMNIRAM BOARD (FACE COMPONENT SIDE OF BOARD)

EVEN (E) MEANS AO $=0$ ON BYTE TRANSFERS
ODD (O) MEANS AO $=1$ ON BYTE TRANSFERS

For use with CROMEMCO CDOS and CROMIX operating systems the jumper area connections are the same. These are as follows:
$A \quad$.
$B \cdot 5 \cdot[\cdot \square$
D • •
$\mathrm{E} \because$
F

 \square

Switch settings for the CDOS system are as follows (X=either):

	Si	Si	S3	S4	S5
1	ON	OFF	ON	ON	X
2	ON	ON	ON	ON	X
3	ON	ON	ON	ON	X
4	ON	OFF	ON	ON	X
5	ON	OFF	ON	ON	X
6	ON	ON	ON	ON	X
7	OFF	ON	ON	ON	X
8	ON	ON	ON	ON	X

Switch settings for the system bank in a one user CROMIX system are as follows (X=either):

	Si	S2	S3	S4	S5
1					
2	ON	OFF	ON	ON	X
3	ON	ON	OFF	OFF	X
4	ON	ON	ON	ON	X
5	ON	OFF	ON	ON	X
6	ON	OFF	ON	ON	X
7	ON	ON	ON	ON	X
8	OFF	ON	ON	ON	X
	ON	ON	ON	ON	X

If the omniram is to be used with the Seattle Computer Products l6-bit 8086 system the OMNIRAM jumper areas should be connected as follows:

The switch settings are given below. The address of the board in this illustration begins at 00000 (X=either position).

S1	S2	S3	S4	S5

1	ON	X	X	X	X
2	ON	X	X	X	X
3	ON	X	X	X	X
4	ON	X	X	X	X
5	ON	X	X	X	X
6	ON	X	X	X	X
7	ON	X	X	X	X
8	ON	X	X	X	X

If the OMNIRAM is to be used with the IMSAI MPU-B (8085) system without front panel the jumper settings are as follows:
A • \square
B .
$C \square$
D . .
E $\underset{\square}{\square}$
$F \rightleftarrows$
G $\begin{aligned} & \circ \\ & 0\end{aligned}$

If the OMNIRAM is to be used with the IMSAI MPUA-A (8080) system with front panel the jumper settings are as follows:
A \quad.
B \quad.
C
D. . $\mathrm{E} \underset{\square}{\square}$
$F \square$
$G \stackrel{.}{\square}$

| |
| :--- | :--- |
| | H .

ALL switch settings are inoperative when using IMSAI protocal (A-16) phantom.

4

